Cyclic Ketiminoboranes

Norbert Weis,*[a] Hans Pritzkow,[a] and Walter Siebert[a]

Dedicated to Prof. M. F. Hawthorne on the occasion of his 70th birthday

Keywords: Boranes / Diazaboroles / Heterocycles / Ketiminoboranes / Crystal Structures

The cyclocondensation reaction of benzil-bis(trimethyl-silylimin) (3) and $\text{Cl}_2\text{B-N}i\text{Pr}_2$ via silicon-boron exchange results in the solvent-dependent formation of the 1,3,2-diazaborole 1a or the 1,3,6,8,2,7-tetraazadiborecin 2a. Using the more rigid 9,10-bis(trimethylsilylimino)phenanthrene instead of 3 only the five-membered heterocycle 4,5-

biphenylene-2-diisopropylamino-1,3,2-diazaborole (**1b**) is formed. The cyclic ketiminoboranes are characterized by NMR and X-ray diffraction data. The 1,3,2-diazaborole ring is almost planar, while the conformation of the 1,3,6,8,2,7-tetraazadiborecin has the shape of a figure-eight loop.

More than 35 years ago Hawthorne^[1] synthesized the first examples of alkylideneaminoboranes. Information about their geometry and BNC bond order were obtained from IR data and X-ray structure analyses^[2]. The results were complemented by theoretical studies^[3], which postulate a cumulene-like arrangement for the >C=N=B< group. Geometry-optimized calculations on 6-31G niveau resulted for HB(N=CH₂)₂^[4] and B(N=CH₂)₃^[5] energetic differences of 74 and 12 KJ/mol, respectively, between the linear and bent CNB structure.

Scheme 1

A cumulene-like arrangement is difficult to verify in small cyclic molecules, in which the $C\!=\!N\!-\!B$ unit may be compared with an allyl cation. To our knowledge only a few six-membered heterocycles such as $\mathbf{A}\!-\!\mathbf{C}^{[6,7,8]}$ with an incorporated $C\!=\!N\!-\!B$ unit have been described. A dithiatetraazadiborocin $^{[9]}$ is an example of an eight-membered ring with $B\!-\!N\!=\!S$ units.

Here we present the five- and ten-membered boron-nitrogen heterocycles 4,5-diphenyl-2-diisopropylamino-1,3,2-diazaborole (1a), 4,5-biphenylene-2-diisopropylamino-1,3,2-diazaborole (1b) and 2,7-bis(diisopropylamino)-4,5,9,10-tetraphenyl-1,3,6,8,2,7-tetraazadiborecin (2a), obtained via

Scheme 2

The reaction of benzil-bis(trimethylsilylimin) (3)^[10] with (diisopropylamino)dichloroborane in n-hexane leads to the formation of 1a in 71% yield. Its composition follows from NMR and MS data. The ¹¹B-NMR signal is shifted 7 ppm to lower field ($\delta = 37$) relative to comparable non-cyclic ketiminoboranes $R_2N-B(N=CPh_2)_2$ (R = Me, Et) [11] [12]. This shift is a consequence of the orbital symmetry, which does not allow an interaction of the free electron-pair of the ketiminonitrogen atom and the p_z orbital of the boron atom in the five-membered heterocycle. With four π electrons the diazaborole 1a should posses strong acceptor properties, however, its chemical reduction to the corresponding 6 π aromatic [1a]²⁻ has not been successful. The cyclovoltammogram of 1a exhibits an irreversible reduction at $E_{1/2} = -1.28$ eV. Because single crystals of **1a** could not be obtained, crystalline 1b was synthesized by reacting 9,10bis(trimethylsilylimino)-phenanthrene with Cl₂B-N₁Pr₂. A dimerization of 1b to a ten-membered ring does not take place, prevented by the syn-conformation of the fixed 1,4diazadiene. In the ¹H-NMR spectrum the expected doublet and septet for the isopropyl group and four signals of the aromatic hydrogen atoms are observed in correspondence

silicon-boron exchange reactions and characterized by X-ray structure analyses.

[[]a] Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany Fax: (internat.) +49 (0)6221/54-5609 E-mail: ci5@ix.urz.uni-heidelberg.de

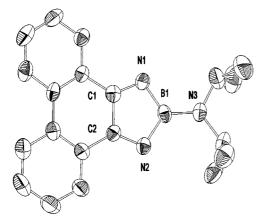


Figure 1, Molecular structure of $\bf 1b$ in the crystal. Selected bond lengths [Å] and angles [°] for molecule A: B1-N3 1.383(7), B1-N1 1.505(7), B1-N2 1.506(7), C1-N1 1.296(6), C2-N2 1.295(6), C1-C2 1.513(7), N1-B1-N3 121.7(5), C1-N1-B1 101.5(4), N1-B1-N2 111.8(4), C15-N3-B1-N2 2.5.

with the symmetry of the molecule. The ¹¹B-NMR signal of **1b** is observed at the same shift ($\delta = 37$) as for **1a**.

In methylenchloride as solvent the silicon—boron exchange reaction leads to the ten-membered 2,7-bis(diisopropylamino)-4,5,9,10-tetraphenyl-1,3,6,8,2,7-tetra-azadiborecin (**2a**) in 62% yield. Its $^{11}B\text{-NMR}$ signal at $\delta=28$ appears at higher field than that of **1a**, **b**. Two signals for the methyl group of the isopropylamino substituents in the $^{1}H\text{-}$ and $^{13}C\text{-NMR}$ spectra point to a hindered rotation around the $B\text{-}N(P\!r)_2$ bonds.

By slow diffusion of n-hexane into the CH_2Cl_2 solution of $\mathbf{1b}$ single crystals suitable for an X-ray structure analysis were obtained. The two independent molecules in the cell show no significant difference.

The molecule is almost planar. The five-membered diazaborole has two short C=N double bonds [1.295(6)-1.304(6) Å] and two longer B-N bonds [1.495(7)-1.515(7) Å]. The exocyclic B-N bond lengths [1.383(7),1.386(7) Å] are in the region of B=N double bonds. The C-C bond length [1.508(7),1.513(7) Å] is quite short. From this point of view $\bf 1a$, $\bf b$ may be described as triazaborafulvene derivatives.

2a crystallizes in cubes; its X-ray structure analysis shows that the heterocycle deviates considerably from planarity. The arrangement of the ring can be described as a figure-eight loop, being built from two 1,4-diazadiene units in anti conformation with a torsion angle of 105° , which are bridged by two $B-N_{I}Pr_{2}$ units. As indicated by the distances [N5-B1: 1.407(3) Å], the exocyclic B-N bonds have double-bond character. The bond lengths in the C=N-B units [C=N: 1.277(2) Å, =N-B: 1.458(3) Å] correspond to the values reported for a $B(N=CH_{2})_{3}$ [5]. One has to consider that the $R_{2}C=N$ planes are turned out of the plane around the boron atoms. This geometry allows a partial interaction between the electron pair of the nitrogen atom and the p_{z} -orbital of the boron atom, as indicated by the high-field shift in the ^{11}B -NMR spectrum.

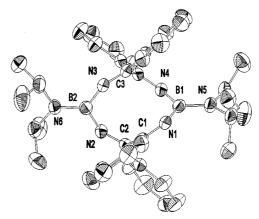


Figure 2. Molecular structure of 2a in the crystal. Selected bond lengths [Å] and angles [°]: N5-B1 1.407(3), N6-B2 1.400(3), N1-B1 1.458(3), N4-B1 1.470(3), C1-N1 1.277(2), C2-N2 1.273(3), C3-N3 1.277(2), C4-N4 1.276(2), C1-C2 1.525(3), C3-C4 1.513(3), C1-N1-B1 128.6(2), C4-N4-B1 127.3(2), C3-N3-B2 127.9(2), C2-N2-B2 128.6(2), N1-B1-N5 121.5(2), N2-B2-N3 119.7(2), N1-B1-N5 119.9(2), N4-B1-N5 118.7(2), N2-B2-N6 120.6(2), N3-B2-N6 120.6(2), N1-C1-C2-N2 104.9, N3-C3-C4-N4 105.2.

Experimental Section

General: Reactions were carried out under dry argon, using standard Schlenk techniques. Solvents were dried, distilled, and saturated with nitrogen. Glassware was dried with a heat-gun in high vaccum. $-\ ^1H\mbox{-}\ ^{13}C\mbox{-}\ ^{11}B$ NMR: BRUKER AC 200 spectrometer, NMR references are (CH $_3$) $_4Si$ and BF $_3$ \cdot Et $_2O$. - Mass spectra were obtained with a Finnigan MAT 8200 plus spectrometer using EI technique. Cyclic voltammetry data (EG&G PARC 175 potentiostat): Pt disc (1mm) working electrode, CH $_2Cl_2$ solution, 0.1 M Bu $_4NPF_6$ as supporting electrolyte, Pt-wire as auxiliar electrode, SCE as reference electrode.

1a: 362 mg (2 mmol) of $\text{Cl}_2\text{BN}(Pr)_2$ dissolved in 10 mL of *n*-hexane was added dropwise within 50 min to a solution of 704 mg (2 mmol) **3** in 20 mL of *n*-hexane at room temp. After stirring for 14 h the yellow precipitate was filtered and washed with a small amount of cold *n*-pentane (0 °C), yield: 447 mg (1.4 mmol, 71%) of **1a.** − ^1H NMR (δ in CDCl₃): 7.52−7.47 (m, 4 H, C₆H₅), 7.40−7.24 (m, 6 H, C₆H₅), 4.37 [sept, J = 6.8 Hz, 2 H, CH(CH₃)₂], 1.47 [d, J = 6.8 Hz, 12 H, CH(CH₃)₂], − ^{13}C NMR (δ in CDCl₃): 178.5 (C=N), 136.3 (*i*-C, C₆H₅), 130.2, 129.1, 127.8 (CH, C₆H₅), 47.9 [CH(CH₃)₂], 24.5 [CH(CH₃)₂], − ^{11}B NMR (δ in CDCl₃): 36.6. − MS (70 eV,EI): m/z (%): 317 (16) [M⁺], 214 (27) [M − C₆H₅CN]⁺, 171 (64) [M − C₆H₅CN, −*i*Pr]⁺, 103 (24) [C₆H₅CN⁺], 44 (100) [*i*PrH⁺]. − m.p. 185−187°C.

1b: 362 mg (2 mmol) of Cl₂BN(*I*Pr)₂ dissolved in 10 mL of CH₂Cl₂ was added dropwise within 30 min to a solution of 700 mg (2 mmol) 9,10-bis(trimethylsilylimino)phenanthrene in 20 mL of CH₂Cl₂ at 0 °C. After stirring for 14 h at room temp. the solvent and ClSiMe₃ were removed in vaccuo. The residue was dissolved in 2 mL of CH₂Cl₂ and *n*-hexane was allowed to diffuse into the solution at room temp. After 15 days crystalline **1b** was filtered, yield: 197 mg (0.6 mmol, 31%). – ¹H NMR (δ in CDCl₃): 8.37–8.33 (m, 2 H, C₆H₅), 7.95–7.92 (m, 2 H, C₆H₅), 7.53–7.44 (m, 2 H, C₆H₅), 7.36–7.28 (m, 2 H, C₆H₅), 4.38 [sept, J = 6.7 Hz, 2 H, CH(CH₃)₂], 1.48 [d, J = 6.7 Hz, 12 H, CH(CH₃)₂]. – ¹³C NMR (δ in CDCl₃): 172.8 (C=N), 135.6 (*i*-C, C₆H₅), 132.7, 128.4, 124.1 (CH, C₆H₅), 48.4 [*C*H(CH₃)₂], 24.9 [CH(*C*H₃)₂]. – ¹¹B NMR (δ in CDCl₃): 37.1. – m.p. 202–206°C (decomp.).

SHORT COMMUNICATION

2a: 905 mg (0.5 mmol) of Cl₂BN(*i*Pr)₂ dissolved in 20 mL of CH₂Cl₂ was added within 1 h dropwise to a solution of 1.76 g (5 mmol) 3 in 50 mL of CH₂Cl₂ at room temp. After stirring for 14 h the solvent and ClSiMe3 were removed in vaccuo. The residue was dissolved in 10 mL of CH2Cl2 and 5 mL of n-hexane was added. After 50 h at 6°C 1.91 g (3.0 mmol, 62%) 2a was filtered. $-\ ^{1}H\ NMR\ (\delta\ in\ CDCl_{3}):\ 7.72-7.67\ (m,\ 8\ H,\ C_{6}H_{5}),\ 7.40-7.28$ (m, 12 H, C_6H_5), 3.46 [sept, J = 6.7 Hz, 4 H, $CH(CH_3)_2$], 0.96 [d, $J = 6.7 \text{ Hz}, 6 \text{ H}, \text{CH}(\text{C}H_3)_2$, 0.91 [d, $J = 6.7 \text{ Hz}, 6 \text{ H}, \text{CH}(\text{C}H_3)_2$]. - ¹³C NMR (δ in CDCl₃): 164.3 (C=N), 137.4 (i-C, C₆H₅), 130.4, 128.8, 127.8 (CH, C_6H_5), 45.3 [$CH(CH_3)_2$], 21.8 [$CH(CH_3)_2$]. - ¹¹B NMR (δ in CDCl₃): 28.2. - MS (70 eV, EI): m/z (%): 634 (1) $[M^+]$, 428 (56) $[M - (C_6H_5CN)_2]^+$, 328 (100) $[M - (C_6H_5CN)_2]$ $- N_i Pr_2$]⁺. - m.p. 150-152°C.

Crystal Structure Determination: Unique intensity data sets were collected at -70 °C with a four-circle diffractometer (Mo- K_{α} radiation $\lambda = 0.71073$ A, graphite monochromator, ω -scan). Empirical absorption corrections (ψ -scans) were applied. The structures were solved by direct methods [SHELXS86][13] and refined by least squares methods based on F^2 with all mesured reflections [SHELXL97]^[14]. All non-hydrogen atoms were refined anisotropically. – Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Center 1b: CCDC-102512, 2a: CCDC-102512. Copies of the data can be obtained free of charge by application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: int. code +44 (0)1223/ 336-001; e-mail: deposit@ccdc.cam.ac.uk.

1b: Crystal Data: Orthorhombic, $P2_1cn$, a = 8.524(5), b =16.080(9), c = 25.950(14) Å, Z = 8; 2084 reflections, R1 = 0.059. **2a:** Crystal Data: Monoclinic, $P2_1/c$, a = 10.948(6), b = 10.433(5), $c = 32.990(17) \text{ Å}, \beta = 95.12(2), Z = 4; 4599 \text{ reflections}, R1 =$

Acknowledgments

This work was supported by the Graduiertenkolleg "Selektivität und Reaktivität in der organischen und metallorganischen Synthese und Katalyse" and the Deutsche Forschungsgemeinschaft (SFB 247).

Received August 6, 1998 [198270]

^[1] M. F. Hawthorne, *Tetrahedron* **1962**, *17*, 117–122

J. R. Jennings, I. Pattison, C. Summerford, K. Wade, B. K. Wyatt, *Chem. Comm.* **1968**, 250; C. Summerford, K. Wade, *J. Chem. Soc.* (A) **1969**, 1487–1491.

V. G. Dorokov, M. F. Lappert, J. Chem. Soc. (A) 1969, 433.
 T. K. Ha; J. Mol. Struct. 1986, 136, 165-176.
 D. R. Armstrong, G.T. Walker, J. Mol. Struct. 1986, 139,

Süddeutsche Kalkstickstoffwerke; DE 1243202 (1965); CA; EN; 68,69053r; (1968)

H. L. Yale, F. H. Bergeim, F.A. Sowinska, J. Bernstein, J. Fried, J. Am. Chem. Soc. **1962**, 84, 688–690.

W. Maringgele, A. Meller, Chem. Ber. 1979, 112, 1595-1605.

H. W. Roesky, S. K. Mehrotra und S. Pohl, Chem. Ber. 1980, 113, 2063-2068.

^[10] G. Tuchenhagen, K. Rühlmann, Liebigs Ann. Chem. 1968, *711*, 174–183

^[11] B. M. Mikhailov, G. S. Ter-Sarkisyan, N. A. Nikolaeva, V. G. Kiselev, *Izvest.*Akad. Nauk, SSSR Ser. Khim. **1972**, 2320

[12] B. M. Mikhailov, K. L. Cherkasova, Zh. Obshch. Khim. **1973**,

^[13] G. M. Sheldrick, SHELXS86, Univ. Göttingen, 1986

^[14] G. M. Sheldrick, SHELXS97, Univ. Göttingen, 1997